+ - 0:00:00
Notes for current slide
Notes for next slide

Maps in R

Developing skills in R

Malie Lessard-Therrien

November 14, 2018

Maps in R . 1/29

Creating maps in R

  • Spatial visualization with ggplot2
  • Add data to a map
  • Easy, consistent and modular framework for spatial graphics and data analysis

Maps in R . 2/29

Grammar of graphics (gg)


2 principles:

  • distinct layers of graphical elements
  • meaningful plots using aesthetic mapping

layers of a plot

Maps in R . 3/29

Graph elements

ggplot2 Cheatsheet: https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

3 essentials:

  • Data (what you collected, in the right format)
  • Aesthetics (aes)
  • Geometries (geom)

4 optionals:

  • Facets
  • Coordinates
  • Themes
  • Statistics

Maps in R . 4/29

Basic world map

mapWorld <- ggplot () +
borders ("world",
colour = "gray50",
fill = "gray50")
print (mapWorld)

Maps in R . 5/29

Have geo-referenced data

Coral bleaching data from ReefBase http://www.reefbase.org

# Upload data
datCoral <- read.csv("./Data/CoralBleachingData.csv", row.names = 1)
# head (datCoral) #sanity check
# str (datCoral)
Maps in R . 6/29

Subset data based on bleaching events

levels (datCoral$bleaching_severity)
## [1] "High" "Low" "Medium"
## [4] "No Bleaching" "Severity Unknown"
# Remove the category "No Bleaching" and "Severity Unknown"
datCoralSub <- datCoral[
datCoral$bleaching_severity %in% c("Low","Medium","High"), ]
# Replace the factors in a different order than in alphabetic order
datCoralSub$bleaching_severity <- factor(
datCoralSub$bleaching_severity,
levels = levels(datCoralSub$bleaching_severity)[c(2,3,1)]
)
Maps in R . 7/29

Add the data to the map

mapCoral <- mapWorld +
geom_point (data = datCoralSub,
aes(x = longitude,
y = latitude,
colour = bleaching_severity),
alpha = 0.5)
print (mapCoral)

Maps in R . 8/29

Fine tuning: Adjusting colours

mapColour <- mapCoral +
scale_colour_manual (values = c("Low" = "yellow",
"Medium" = "orange",
"High" = "red"))
print(mapColour)

Maps in R . 9/29

Fine tuning: Facets

mapFacets <- mapColour +
facet_wrap (~ year)
print (mapFacets)

Maps in R . 10/29

Steps to create a map

  1. Have an idea: know what you want to visualize
  2. Get the map you need
  3. Get data that is geo-referenced (coordinates of places you want to show)
  4. Plot map and data together
  5. Customize: add extra visuals as you want
    • Colors
    • Facets
    • Name of places
    • Path
    • etc
Maps in R . 11/29

Functions

  • get_map()
    • get a map from somewhere
    • arguments:
      • source (Google, Stamen, OpenStreetMap and CloudMade)
      • maptype
      • zoom

Maps in R . 12/29

Functions

  • get_map()
    • get a map from somewhere
    • arguments:
      • source (Google, Stamen, OpenStreetMap and CloudMade)
      • maptype
      • zoom

  • ggmap()
    • plot the map
Maps in R . 13/29

Functions

  • get_map()
    • get a map from somewhere
    • arguments:
      • source (Google, Stamen, OpenStreetMap and CloudMade)
      • maptype
      • zoom

  • ggmap()
    • plot the map
  • geocode()
    • finds latitude and longitude of places
Maps in R . 14/29

Functions

  • get_map()
    • get a map from somewhere
    • arguments:
      • source (Google, Stamen, OpenStreetMap and CloudMade)
      • maptype
      • zoom

  • ggmap()
    • plot the map
  • geocode()
    • finds latitude and longitude of places
  • trek()
    • finds coordinates for path between places
Maps in R . 15/29

Resources

Kahle, D., & Wickham, H. (2013). ggmap: Spatial Visualization with ggplot2. R Journal, 5(1).

Maps in R . 16/29

Resources

Kahle, D., & Wickham, H. (2013). ggmap: Spatial Visualization with ggplot2. R Journal, 5(1).

Chang, W. (2012). R graphics cookbook: practical recipes for visualizing data. " O'Reilly Media, Inc.".

Maps in R . 17/29

Resources

Kahle, D., & Wickham, H. (2013). ggmap: Spatial Visualization with ggplot2. R Journal, 5(1).

Chang, W. (2012). R graphics cookbook: practical recipes for visualizing data. " O'Reilly Media, Inc.".

Cheatsheet: https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/ggmap/ggmapCheatsheet.pdf

Maps in R . 18/29

Libraries needed

Get the updated version of ggmap:

#if(!requireNamespace("devtools")) install.packages("devtools")
#devtools::install_github("dkahle/ggmap", ref = "tidyup")
library (ggmap)
library (tidyverse)
Maps in R . 19/29

Devtools: (developper tools) providing R functions that simplify many common tasks for package developping

Exercise 1

Enter your API key in R with ggmap::register_google (key = "number")

Maps in R . 20/29

Exercise 1

Get the desired map

# Get the map form source
# Stockholm University recentered
su <- get_map (
location = c(lon = 18.0590,
lat = 59.3644),
source = "stamen",
maptype = "terrain",
zoom = 16,
crop = TRUE)
# make the map into a
# ggmap object to plot it
suMap <- ggmap(su,
extent = "device")
# Visualise the map
print(suMap)

Note: zoom between 3 (continent) to 21 (building), default value 10 (city)

Maps in R . 21/29

Exercise 1

Get the locations

(enable Geocoding API in the Google Console)

# Create a tibble of SU's important locations
suLocations <- tibble(
location = c("DEEP, Stockholm University",
"Stockholm University Library",
"Universitetet, Stockholm"))
# Get the geocode (lat/lon) of the locations
suCoord <- geocode(suLocations$location)
# Create a data frame of the data
# for easier plotting
suDat <- cbind(suLocations, suCoord)
suDat
## location lon lat
## 1 DEEP, Stockholm University 18.06013 59.36604
## 2 Stockholm University Library 18.06097 59.36327
## 3 Universitetet, Stockholm 18.05460 59.36519
Maps in R . 22/29

Exercise 1

Plot the locations

# Plot important locations
suLocationsMap <- suMap +
geom_point(data = suDat,
aes(x = lon, y = lat),
color = 'red',
size = 5)
print (suLocationsMap)

Maps in R . 23/29

Exercise 1

Add names of locations

# Add name of places
suLocMapNames <- suLocationsMap +
geom_text(data = suDat,
aes(label = location),
size = 5,
hjust = 0,
vjust = -1)
print (suLocMapNames)

Maps in R . 24/29

Exercise 1

Get the route (enable Directions API in the Google Console)

# Create the route with trek()
# Deep to library
goto_library <- trek(
from = "DEEP, Stockholm University",
to = "Stockholm University Library",
structure = "route",
mode = "walking")
# Add route to map
deepToLibraryMap <- suLocMapNames +
geom_path(data = goto_library,
aes(x = lon, y = lat),
colour = "blue",
size = 1.5,
alpha = .5,
lineend = "round")
print (deepToLibraryMap)

Maps in R . 25/29

Exercise 1

Get the route (enable Directions API in the Google Console)

# Library to t-bana station
goto_tbana <- trek(
from = "Stockholm University Library",
to = "Universitetet, Stockholm",
structure = "route",
mode = "walking")
# Add route to map
LibraryToTbanaMap <- suLocMapNames +
geom_path(data = goto_library,
aes(x = lon, y = lat),
colour = "blue",
size = 1.5,
alpha = .5,
lineend = "round") +
geom_path(data = goto_tbana,
aes(x = lon, y = lat),
colour = "blue",
size = 1.5,
alpha = .5,
lineend = "round")
print (LibraryToTbanaMap)

Maps in R . 26/29

Exercise 2

Option local: Create a map of where you live, the closest metro station and your favorite coffee shop/restaurant/bar in town.

Option UK: Create a map of the pubs and bars in the town “Oldham”, UK

Maps in R . 27/29

For more

RaukR course:

library (leaflet): open-source JavaScript libraries for interactive maps

Maps in R . 28/29

Thank you

Maps in R . 29/29

Creating maps in R

  • Spatial visualization with ggplot2
  • Add data to a map
  • Easy, consistent and modular framework for spatial graphics and data analysis

Maps in R . 2/29
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow